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In-Plane Response of Laminates with Spatially Varying
Fiber Orientations: Variable Stiffness Concept

Zafer Giirdal* and Reynaldo Olmedot
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

A solution to the plane elasticity problem for a symmetrically laminated composite panel with spatially
varying fiber orientations has been obtained. The fiber angles vary along the length of the composite laminate,
resulting in stiffness properties that change as a function of location. This work presents an analysis of the
stiffness variation and its effects on the elastic response of the panel. The in-plane response of a variable stiff ness
panel is governed by a system of coupled elliptic partial differential equations/Solving these equations yields the
displacement fields, from which the strains, stresses, and stress resultants can be subsequently calculated. A
numerical solution has been obtained using an iterative collocation technique. Corresponding closed-form
solutions are presented for three sets of boundary conditions, two of which have exact solutions, and therefore
serve to validate the numerical model. The effects of the variable fiber orientation on the displacement fields,
stress resultants, and global stiffness are analyzed.

Introduction

C OMPOSITE materials have gained prominence by allow-
ing the designer to tailor a structure to provide the best

static and dynamic response under the prescribed loads. For
years the tailoring of these structures has been done by varying
the orientation of straight fiber prepregs or the total thickness
of the laminate. Recent developments in manufacturing tech-
niques, such as computer controlled three-axes filament wind-
ing, tape-laying machines, and fiber and tow placement tech-
nology, make it possible to fabricate composite structures with
fiber orientations that vary from one location to another. For
flat panels, varying the orientation of the fibers along the plate
axes results in a curved fiber format, which exhibits variable
stiffness properties.

The current literature has only a handful of works on the
analysis of panels with variable stiffness properties. Using the
Ritz method, Martin and Leissa1 have successfully modeled a
composite sheet with a variable fiber volume fraction. They
have shown that improvements in buckling performance are
possible using the variable stiffness concept. In addition, Kuo
et al.2 have successfully manufactured and modeled elastomer
composite sheets having fibers in the form of sinusoidal
waves. For rectangular laminated panels with a central hole,
Hyer and Lee3 have developed finite element models of panels
with curvilinear fiber format to improve strength and buckling
performance. By varying the fiber angle from one element to
another, an approximation to a curvilinear fiber format is
obtained, and based on the distribution of the internal
stresses, improvements in the failure load over straight fiber
configurations are achieved. Finally, DiNardo and Lagace4

have found that for panels with dropped internal plies, the
buckling performance is driven by the changes in stiffness
along the panel.

The motivation for this work is to model the in-plane elastic
response of panels having a curved fiber format, with the
intention of subsequently extending the analysis to encompass
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the buckling response, where improvements over current con-
figurations are likely. A continious curved fiber format is
proposed to eliminate some of the problems encountered in
some of the studies just mentioned, namely, the issue of
manufacturability, continuity of the fibers or the fiber volume
fraction, and stress concentration due to abrupt changes in
thickness.

The scope of this study is limited to the in-plane response of
square panels for which the fiber angle varies as a function of
one spatial coordinate. An analysis of the stiffness distribu-
tion for various configurations is presented first. The govern-
ing equations are then derived, and a numerical technique for
their solution is introduced. Three sets of boundary conditions
are identified, and closed-form solutions are developed for
each case.

Analysis
Constitutive Relations

Applying the classical lamination theory to panels with vari-
able fiber angles results in A, B, and D matrices in the consti-
tutive relation

(i)
that do not have constant values [i.e., A = A(xf y)] and thus
reflect the changes in the fiber angle. The vectors N and M
represent the stress resultant forces and moments; and e and K
denote the midplane strains and curvatures, respectively. Us-
ing the material invariants5 for an orthotropic lamina, U\,
C/2, . . . , U5 a convenient form of the A, B, and D matrices of
a laminate is obtained as

[A, B, D] = £22
(symm)

where the elements ey are defined by

el2=U4VQ-U3V3

el6=-y2U2V2-U3V4

(2)

(3a)

(3b)

(3c)

(3d)
751
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and where the V are defined by

(3e)

(3f)

(4a)

(4b)

(4c)

(4d)

(4e)

and h is the total thickness of the laminate. Limiting the
stacking sequence to symmetric balanced laminates, [±0]S)
the extensional stiffness matrix A reduces to

, B, ay = /2 cos(20)[l, z, z2] dz

A, B, D) = /2 sm(26>)[l, Z, Z2} dz

, B, D) = \U2
h/2 cos(40)[l, z, z2] dz

2
2 sin(40)[l, z, z2} dz

A=h

+ h

UA 0

0 0

U2 0 0

0 -U2 0
0 0 0

cos(20)

0

-U3 0
C/3 0
0 -£/,

cos(40) (5)

where the fiber angle 6 is a function of the location in the
panel, 0 = d(x, y). For a balanced symmetric laminate /? = 0,
and the in-plane constitutive relation simplifies to

An A12 0
A12 A22 0
0 0 A66

(6)

There are several ways to vary the fiber angle. However, as
a consequence of practical limitations on processing tech-
niques that result in fiber patterns that are parallel to one
another, the fiber orientation is made to vary only along one
of the coordinates. A linear variation of the fiber orientation
along the x coordinate is obtained if the fiber orientation is
defined by

(7)

The fiber angle starts from the angle T0 at the panel midlength
x = 0, and reaches a value of T\ at the panel end x = a/2. The
fiber orientation is assumed to be symmetric with respect to
x = 0. Thus, a fiber path that passes through the origin is a
smooth antisymmetric function of the x coordinate, defined by

y =

0<x<a/2

Mcos(7o)]j

(8a)

y = _Mcos(ri)]

(8b)

Although at the outset the limitations on the fiber orientations
may look too restrictive, it is possible to generate panels with
a wide range of properties. For example, some of the panel
laminations are presented in Fig. 1 for various linear combina-
tions of the panel midlength and panel end angles, T0 and TI.

Note that a panel with TQ = TI = 45 deg is actually a panel
with straight fibers and has constant stiffness properties along
the length. In addition, other fiber angle orientations are
possible, such as sinusoidal fiber patterns defined by

y =X sul l

However, the fiber angle defined in Eq. (7) lends itself to the
development of closed-form solutions for the in-plane re-
sponse.

An effective axial modulus and Poisson's ratio of a lami-
nated orthotropic material are defined by

AnA22-A?2

hA22 ^ (10)

For straight fiber format panels these quantities are constant
for the entire panel, but for a variable stiffness panel the A are
functions of x; therefore, Ex = Ex(x) and vxy = vxy(x) do not
represent global values but, rather, a local stiffness and Pois-
son's ratio. The normalized x direction modulus Ex(x) is
shown in Fig. 2 as a function of the x coordinate for T0 = 45
deg and values of Ti ranging from 0 to 45 deg. For an angle
change of only 15 deg (7i = 30 deg) the axial stiffness at the
panel end is about two times greater than at the panel mid-
length. A more drastic change is seen when TI - 0 deg, since
the effective stiffness at the panel end is almost seven times
greater than at the panel midlength. The opposite may be

Fig. 1 Variable stiffness configurations [( ± B) layers shown].
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Fig. 2 Effective x direction modulus as a function of x/a.

accomplished by having TI greater than TQ. The line for
T{ = 45 deg represents a panel with straight fibers.

Under uniaxial A:-direction compression, the transverse dis-
placement v and stress resultant Ny will be affected by the
changes in vxy(x). The vxy is shown as a function of the x
coordinate in Fig. 3 for a panel with T0 = 45 deg. When
TI = 30 deg the effective Poission's ratio increases almost
linearly with respect to the normalized coordinate x/a. The
curves for T\ = 0 deg and TI = 15 deg show that vxy(x) will
reach a maximum at x/a = 0.23 and x/a = 0.35, respectively.
Note that at x = a/2 the value of vxy(x) for the TI = 0-deg
curve is given by the material property vn - 0.28, since the
fibers are all oriented at a 0-deg angle. Given that the fiber
orientations are functions of the x coordinate only, Ex(x) and
vxy(x) do not change in the y direction in this case.

Equilibrium Equations
The in-plane plate equilibrium equations are given by

dN*
dx dy = 0

dx
= 0

(Ha)

(lib)

By substituting the in-plane constitutive equations defined in
Eq. (6) and the linear strain-displacement relationships

du• — >
dx

du dv
dy (12)

into the in-plane equilibrium Eqs. (11 a) and (lib) yields

82u d2v——2 + A66(x) —— + [Al2(x) + A66(x)]
dx2 dy2 dxdy

dAn(x) du dAn(x) dv _
dx dx dx dy ~

(13a)

d2v d2v—— + A22(x) —— + [Al2(x) + A66(x)] d2U

. dA66(x) (du dv\_i_ ———— i — _j_ — i _ y
dx \dy dxj (13b)

where the Ay are given by Eq. (5) and 6 = 6(x). Note that since
the symmetric laminate is assumed to be balanced, the A^ and
A26 terms are identically zero. The equilibrium equations form
a set of coupled elliptic partial differential equations with
variable coefficients. Their solution yields the u and v dis-
placement fields, from which the strains can be calculated.
The constitutive equations can then be applied to obtain the
in-plane stress resultants.

Solution
The displacement fields for variable stiffness panels can be

quite complex, yielding nonuniform strain and stress fields. In
contrast to panels with straight fibers, where a homogeneous
in-plane stress state automatically satisfies the equilibrium
Eqs. (lla) and (lib), the complexity of the governing equa-
tions for variable stiffness configurations precludes such sim-
ple solutions. Two approaches are presented for the solution
of the displacements. The first approach is a numerical scheme
that can be applied to generic problems governed by partial
differential equations in the form of Eqs. (13). The second
approach is an attempt to find computationally efficient
closed-form solutions. The angles T0 and TI have been chosen
to range between 0 and 45 deg. The results presented here are
based on a four-layer graphite-epoxy laminate having
EI = 26.25 x 106 psi, E2 = 1.49 x 106 psi, G12 = 1.04 x 106 psi,
and vi2 = 0.28, with a layer thickness of 0.005 in. (hence,
h = 0.02 in.). The panels are square, a = b = 10 in. Because
of the twofold symmetry of the problem, only one-quarter of
the panel was modeled. All panels have linear fiber angle
variations.

Numerical Solution
Equations (13a) and (13b) can be rearranged in the follow-

ing form:

d2u d2u dAn(x) du (l*o

where

and

«,»

Equations (14) form a system of norihomogeneous partial
differential equations with variable coefficients. The coupling
between the in-plane displacements u and v occurs through the
nonhomogeneous terms p(x, y) and q(x, y). The equations
cannot be decoupled; therefore, to obtain a numerical solu-
tion, an iterative technique is necessary. The numerical solu-
tion of such elliptic boundary value problems has been studied
extensively6 and the ELLPACK7 elliptic differential equation
solver was found to perform well for this particular problem.
A method of solution used by ELLPACK, Hermite colloca-
tion, involves approximating each displacement field by a
Hermite bicubic piecewise polynomial a(x, y) over a rectangu-
lar grid containing four NGRX x NGRY Gauss points, where
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Fig. 3 Effective Poisson's ratio as a function of x/a.
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NGRX and NGRY are the number of x and y grid lines,
respectively. The form of the approximation is given by

NGRX NGRY
<*(x,y) = LI L iokjhk(x)hj(y) + bkjhk(x)gj(y)

k = 1 j = 1

+ ckjgk(x)hj(y) + dkjgk(x)gj(y)} (17)

where hk(x) and #*(:*:) are the Hermite cubic basis functions.7
The differential equation is satisfied at the interior Gauss
points and along the boundary under the prescribed boundary
conditions, resulting in four NGRX x NGRY equations for
the coefficients akj9 bkj9 ckj9 and dkj. The iterative solution
of the system begins with an assumed solution for the v
displacement field, which is then used to obtain p(x, y), so
that u(x, y) may be obtained by solving Eq. (14a). The new u
then becomes the input for q(x, y) in Eq. (14b), and a new
solution for v is obtained. The control program iterates, alter-
nating between the two equations until the solutions converge.
Once the displacement fields are obtained, the strains and
stress resultants can be calculated using the strain-displace-
ment and constitutive relations.

Closed-Form Solutions
Closed-form solutions are now developed for three distinct

cases. The boundary conditions for each case are shown in
Fig. 4. Since only one-quarter of the panel is modeled, the
boundary conditions at x = 0 and y = 0 represent symmetry
conditions. The symmetry conditions with respect to the x and
y axes are v = du/dy = 0 and u = dv/dx = 0, respectively. In
all cases the panel is loaded by a uniform end shortening, w0»
applied at x = a/2, but the boundary conditions along the
transverse edges are different. Under the boundary conditions
for case I the transverse edges are traction free. Case II repre-
sents a panel with fixed transverse edges. Under boundary
conditions for the third case, the transverse edges are allowed
to move freely, but they are forced to remain straight. Hence,
one of the conditions on the moveable straight edge is an
integral condition that the total load at y = b/2 must be zero.
For a panel with straight fibers, cases I and III would be
identical; however, since the deformation patterns of variable
stiffness panels are nonuniform, case III represents a distinct
case.

Case I
Whereas an exact closed-form solution cannot be obtained

for this case, an approximate solution may be derived under
certain assumptions. For straight fiber panels the solution is
simple, Ny(x, y) = 0, Nxy(x, y) = 0, and Nx is a constant.
Assuming that the same is true for variable stiffness panels, Ny
from Eq. (6) can be used to express the transverse strain in
terms of the axial strain as

dv Al2(x) du
dy A22(x) dx

Case I
= 0

U = M,

1
>»

00

(18)

Case II
= Nxy =

Assuming that the axial stress resultant Nx is constant every-
where in the panel (Nx = 7V0), substituting Eqs. (5) and (18)
into Nx from Eq. (6), and solving for the axial strain yields

du_ _____2A/b[C/i - U2cos(20) + U3cos(40)]_____
~dx " h [2Ul - Ul - 2Ul + (£/22 + 4UiU3 + 4C/3C/4)cos(4(9)] (19)

where the fiber angle 0 is a function of A: given by Eq. (7), and
the denominator has been simplified using trigonometric iden-
tities. Since the stiffness changes only in the x direction, the u
displacement can be assumed to be a function of the x coordi-
nate only. Integration of Eq. (19) with respect to x results in
the closed-form expression for the u displacement. For a linear
angle variation, the u displacement field consists of four parts
plus a constant of integration as

u(x) = u2(x) + u3(x) + u4(x) + ur

where

/itan-1!'
(G2 - Cl)tan[20(x)]

u3(x) = aN0U2e(x)
C2(T0 -

u4(x) = -

and where

_ _,f(fi-d)tan[2g(y)]'o c/3 C\ tan l j ———. =——
( v/^2 /^2

, , VC '-C*
2C2VC2 - C2

2(T0 - T

C, = 2C/j2 - f/| - 2t/42

C2 = 4[/3[/4 -

(20)

(21a)

(21b)

(21c)

(21d)

(22a)

(22b)

The constant of integration ur can be evaluated by suppressing
the rigid body motion of the panel. Equation (20) may be used
to solve for N0 given the prescribed end displacement u0 at
x = a/2. The v displacement field is then given by

v(x, y) =
-2Ar0{C/4-C/3cos[46i(j«:)])>'

(23)

which is obtained by integrating Eq. (18) with respect to y.

Case III £ b

0 V N = 0. V = -̂ —•JT '* Xy ^9 Y f\

U =

s
00

e =
w = a.

= 0

Symmetry Symmetry x Symmetry
Fig. 4 Quarter panel boundary conditions for each case.
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Case II
When the v displacement of the transverse edges (y = ± b /2)

is fixed, an exact solution for the u displacement field and
stress resultants can be obtained. The boundary conditions for
this case are illustrated in Fig. 4. A solution of the form,
Nx = NQ, Nxy — 0, and ey = 0, where N0 is a constant, satisfies
the equilibrium equations and boundary conditions. The v
displacement field is identically zero everywhere. Therefore,
solving Eq. (6) for the axial strain yields

du _ NQ
dx~An

(24)

The transverse stress resultant can be calculated from Eq. (6)
as

Al2No (25)

By integrating Eq. (24) we obtain the axial displacement field

(26)[Nou = — <]AU
By inspection, f ( y ) must be identically zero in order to satisfy
Eqs. (13a) and (13b). Mathematical a mathematics symbolic
manipulation program, was used to carry out the algebraic
operations to find the u displacement field. Substituting for
An from Eq. (5), results in

u(x)
JMtfi + £/2cos(20) + £/3cos(40)] dx (27)

where B = 0(x). The integration can be carried out by first
changing the integration variable to B using Eq. (7) and then
rewriting the cosine terms in their complex exponential form.
Using the variable transformation t = e2ie, and letting

N0a

the integral becomes

2ihU3(T, - To)

dt
(U2/U3)(t* + 0 -

(28)

(29)

This integral may now be evaluated using a partial fraction
expansion

"(0 = / ft ft
-/! t-h t-t3 t-U

where the roots, t\9 . . . , t4 are given by

ti = 1/2[V-4 + (-co

= l/2[-V-4 + (co + <t>)2 - co - <

(30)

(31a)

(31b)

(31c)

(31d)

u' 2C/i A ^ «,.' 77S ~ TT ' * = ̂ 77 "2)

where

The values of the </7 are obtained by solving the linear system
of equations that results from the partial fraction expansion.

Finally, the integral is obtained as

«(*) = — (33)

where B = B(x) and the constant C is found by suppressing the
rigid body motion of the panel. In this case, the Nx stress
resultant remains constant, and the u displacement field is not
linear.

Case III
When a variable stiffness panel is loaded under the

boundary conditions for case I, the transverse edges do not
remain straight. Instead, they bow when the panel is com-
pressed. It is conceivable that by attaching stiffeners that have
large in-plane bending stiffnesses, the transverse edges of a
variable stiffness panel may be allowed to move freely but be
required to remain straight. The boundary conditions for this
case are shown as case III in Fig. 4. The requirement that the
integral of Ny along the panel length be identically zero en-
sures that the net transverse load being applied is zero. For this
case, Nx = N0j Nxy = 0, v = eQy, and ey = e0, where N0 and e0
are constants. The transverse stress resultant is given by

A12N0 A22AU-A?2
-———— (34)

The integral of Ny at y = b/2 along the x direction is given by

Py = y(x, b/2) dx =

where

de0 = 0

Iu-^i22

(35)

(36)

The integrals can be evaluated by using the transformation
and partial fraction technique described for case II. The trans-
verse strain that satisfies the integral condition for a given load
NQ is, therefore, given by

€o = _ (cNo/d)

By using Eq. (6), the axial strain is

dw _ NQ _
dx An An

(37)

(38)

Integration of this expression with respect to x yields the u
displacement as

(39)

where, the <?7 and tj are the same as in case II; the tj , which are
the roots of the second term, are the same as in case II, but
include the additional root t$ = 0. The qj are the coefficients
from the partial fraction expansion of the second term. The
constant C is evaluated by suppressing the rigid body motion
of the panel.

Results
The elastic response of the variable stiffness panels was

analyzed both by using a numerical model and by using the
closed-form solutions. First, an adequate grid and conver-
gence criterion was established for the numerical solution.
Since the transverse stress resultant Ny must be zero at y = b/2
for case I, the size of a uniform square Af x Af grid was chosen
on the basis of how well this condition was satisfied. With a
10 x 10 grid, the ratio of Nx/Ny along the upper boundary,
away from the boundary collocation points, is less than 10~4,
and the displacements are converged to four significant fig-
ures. Therefore, a 10 x 10 grid was deemed adequate for the
analysis of the variable stiffness panels.
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Since an iterative procedure is used for the solution of the
coupled equations, a convergence criterion is necessary. The
convergence criterion is given as follows:

uk - 1 -6 --1 -6 (40)

where k is the iteration number. Equation (40) was applied at
200 points in the panel, and the program continued to iterate
until the condition was satisfied at every point.

Case I: Free Transverse Edges
An approximate closed-form solution was derived for this

case under two important assumptions: the transverse stress
resultant Ny was assumed to be zero, and Nx was assumed to
be constant throughout the plate. The validity of these as-
sumptions was analyzed by comparing the results obtained
based on the approximate solution with the numerical results
obtained using Hermite collocation.

Because of the change in stiffness, loading a variable stiff-
ness panel with a prescribed end load (Nx = N0) will yield a
different elastic response compared to the response obtained
with a constant end shortening UQ. In addition, the displace-
ment fields are different from the displacement fields for
laminates with straight fibers; that is, the u and v displace-
ments are not linear with respect to x and y, respectively.
Shown in Fig. 5 is the variation of u as a function of x when
y = 0 and y = b/2 for a panel with T0 = 45 deg and TI = 0
deg. For this case, the pattern is clearly nonlinear. The axial
strain, given by the slope of the curve in Fig. 5, is highest in the
more compliant part of the panel, close to x = 0. At x = a/2,
where the axial stiffness is higher, the axial strain is smaller.
Note the difference between the curves for y = 0 and for
y = b/2, indicating that u and, therefore, ex are a function of
both x and y. A similar effect is found in the v displacement,
which varies due to changes in vxy(x).

1.00

0.80

U o.eo

0.40

0.20

0.00

— - Case I (at y=0) and Case III
— - - - - Case II
——— Case I (at y=b/2)

0.00 0.10 0.20 0.30 0.40 0.50

Fig. 5 Normalized u displacement when TO = 45 deg and T\ = 0 deg.
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Fig. 6 Axial stress resultant for a panel with a 15 deg angle change.

N a
X

2.50

2.00

1.50

1.00

T=45° T=0°, Case I

- Numerical Solution
- - - - Closed Form Solution y=0.5b

y=3/8b
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Fig. 7 Axial stress resultant as a function of x and y.
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Fig. 8 Axial stress resultant at x = a/2 for case I with TO = 45 deg.
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y/b

The normalized axial stress resultant Nx for a panel having
TQ = 15 deg and TI = 0 deg is shown in Fig. 6 as a function of
the x coordinate for two values of y/b; also shown is the value
of Nx obtained from the closed-form solution. The numeri-
cally calculated value of Nx changes with respect to both x and
y. Note that the closed-form solution accurately predicts Nx at
y = b/4; for values of y less than b/4 the correlation is even
better. As the value of y approaches the free edge at y = b/2,
however, the closed-form solution tends to overestimate the
value of Nx at the panel midlength and underestimate it at the
panel end. The error at the panel end is 8%.

Variable stiffness panels under uniaxial loading do not have
a homogeneous stress state, and the lack of homogeneity
depends on the amount of change in the fiber orientation. The
closed-form solution, which assumes a homogeneous stress
state, will, therefore, be susceptible to large error when large
angle changes take place. For example, the variation of Nx is
shown in Fig. 7 as a function of the axial coordinate x and the
transverse coordinate y for a panel having T0 = 45 deg and
TI = 0 deg. The value of Nx remains nearly constant until the
value of y approaches the edge, y = b/2. At the edge, the
normalized Nx ranges from 0.80 at x = 0 to 2.10 at x = a/2.
Equations (1 la) and (lib) help explain this change. Because of
a continuously changing fiber orientation, the expansion of
the panel due to the Poisson effect will not be uniform; that is,
some parts of the panel expand more than others under the
compressive load. As a result, shear strains are induced, which
give rise to Nxy. However, the boundary conditions require
that the shear stress resultant be zero at the panel edges and
the planes of symmetry. Therefore, large gradients will de-
velop from the middle of the quarter plate to the planes of
symmetry and the plate edges. To satisfy the equilibrium
equations, an equal and opposite gradient must develop in Nx.
The variation of Nx as a function of the y coordinate is shown



0.50

N ay

u A°o 11

0.25

0.00

-0.25

GURDAL AND OLMEDO: VARIABLE STIFFNESS CONCEPT

1.50

757

y/b=0

y/b=0.5

T =45° T =0°, Case I

0.00 0.10 0.20 0.30 0.40 0.50x/a
Fig. 9 Transverse stress resultant along x/a (case I).
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Fig. 10 Transverse stress resultant along x/a (cases II and III).

in Figure 8 for panels having T0 = 45 deg and various values of
TI. For TI = 45 deg the gradient effect does not appear be-
cause the laminate has a straight fiber format. The gradient in
Nx close to the transverse edge becomes more pronounced as
the difference between T0 and TI increases.

For large angle variations, even though the panel is loaded
uniaxially, the value of Ny may become substantial. For a
small angle change between T0 and T\9 its value is two orders
of magnitude smaller than NX9 so it may be ignored. The value
of Ny9 assumed to be zero everywhere for the closed-form
solution, is not zero in the interior of the panel. For example,
the transverse stress resultant Ny for a panel with T0 = 45 deg
and TI = 0 deg is shown in Fig. 9 as a function of the x
coordinate for y =0 and>> = b/2. Note that atj> =0 the value
of Ny is of the same order of magnitude as NX9 so its value
cannot be neglected. Under compression, the transverse stress
resultant at y = 0 is compressive for values of x/a less than
0.22 and tensile for greater values. The boundary condition at
y = b/2 is satisfied, since the value of Ny is indeed zero along
that line.

Cases II and III: Fixed and Free-but-Straight Transverse Edges
The analytical solutions that were developed for cases II and

III satisfy the boundary and equilibrium conditions exactly. A
numerical model of these two cases was also implemented.
The results for both cases are nearly exact, with an error of at
most 0.04%, introduced due to the discretization of the prob-
lem. Therefore, it is concluded that the collocation technique
yields valid results in the solution of the equilibrium equations.

The u displacement distribution and, therefore, the axial
strain are nonlinear as shown in Fig. 5. As in case I, the axial
strain is highest where the panel has a lower stiffness. An
interesting result is that the deformation patterns for case I at
y= 0 and case III are identical, although the boundary condi-
tions are different. However, the patterns are different at
y = b/2, indicating that in the interior of the panel whether
the panel edges remain straight or not has little bearing on the
response of the u displacement.

For these two cases, despite the fact that the panels have a
variable axial stiffness, the axial stress resultant Nx remains
constant. Although the transverse stress resultant Ny changes
with respect to x and y for case I, for cases II and III it only
varies with x. For both cases the distribution of Ny as a
function of x is shown in Fig. 10 when T0 = 45 deg and TI = 0.
When the edges of the panel are immovable (case II), a com-
pressive axial load will give rise to a compressive transverse
stress resultant along the entire length. As shown in the figure,
close to x = 0 the panel will develop a high Ny to counteract
the high Poission effect where the fiber angle is 45 deg. In fact,
the'Ny at x = 0 is 50 times larger than at x = a/2. For case III,
a compressive load will give rise to a transverse stress resultant
Ny that is tensile or compressive, depending on the x coordi-
nate. According to Fig. 10, if the panel is given an end short-
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Fig. 11 Panel equivalent stiffnesses.

ening u0, a compressive Ny develops for values of x/a less than
0.22, and a tensile Ny develops if x/a is greater than 0.22.
Recall that under the boundary conditions for case III, the
total transverse load being applied is zero. Therefore, it may
be possible to choose the values of T0 and TI such that the
tensile transverse loads develop in the center of the panel when
the panel is compressed, thereby preventing the onset of insta-
bility.

Overall Panel Stiffness
Engineering applications often require an estimate of the

overall stiffness of a structural component. An equivalent
panel stiffness Ex

q can be defined as a global quantity for a
variable stiffness panel by

Pa
hbuQ

where

P = \b
0
/2Nx(a/2, y) dy

(41a)

(41b)

where u0 is the end shortening of the plate, or u(a/29 y). The
value of EZ* is a measure of the force required to obtain a
prescribed displacement at the panel end.

For the three boundary conditions being considered, the
relationship between the panel end angle T\ and the equivalent
stiffness is shown in Fig. 11 for a panel with T0 = 45 deg. For
case I, the relationship between the equivalent stiffness and
the angle TI is roughly linear. Decreasing TI has the effect of
stiffening the panel. But the maximum panel stiffness that can
be reached (T\ = 0 deg) is only 42% of the stiffness of a 0-deg
straight fiber panel, which has a stiffness of E\. However,
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compared to the stiffness of a 45-deg straight fiber panel, the
stiffness of a TQ = 45-deg 7i = 0-deg panel is three times
larger. As expected, the curves for the approximate and nu-
merical values converge as the panel approaches the straight
fiber format T0 - TI = 45 deg. Comparing the stiffness calcu-
lated based on the numerical solution and the approximate
solution, the maximum difference is 6.5% at T\ = 0 deg and
decreases as TI approaches T0. Therefore, the closed-form
solution captures the global response and can be used to
estimate global stiffness even for large angle changes. For
panels with boundary conditions I and III, the global response
is nearly identical. For case II, the stiffness is much higher
since the panel is constrained in the transverse direction.

Conclusion
The elastic behavior of variable stiffness panels is governed

by an elliptic boundary value problem. Unlike panels with
straight fibers, the.displacement fields and stress resultants
are seldom homogeneous. Exact closed-form solutions are
obtainable for some sets of boundary conditions, although the
common problem of compression with free transverse edges
requires a numerical solution. Hermite collocation was found
to perform well in the solution of the in-plane problem when
the transverse edges are free to deform. The closed-form solu-
tion developed for this case may be used when the angle
change is small, and the assumptions under which it was
developed still hold true. The results of the numerical model
show that changes in the elastic properties will generate stress
gradients that give rise to transverse stresses although the
transverse edges are not loaded, and to shear even when no
material shear-extension coupling is present and the loading is
uniaxial. The designer may take advantage of this to tailor the
stress distribution over the plate area. For the cases with fixed
transverse edges and free-but-straight transverse edges, there
is excellent correlation between the numerical solution and the
exact solutions. The angles T0 and TI may be chosen to better

accommodate a given loading condition, achieve a certain
stiffness, or perhaps improve the buckling performance.
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